Measure Theory with Ergodic Horizons Lecture 28

Vitali Covering Lemma. It
$$D \subseteq \mathbb{R}^d$$
 be any λ -measurable set of positive measure
and let C be a cover of D with balls (in, say, doo metric). For each $O \in$
 $a < \lambda(D)$, there is a finite disjoint subcollection $C \in C$ such that
 $\lambda(\Box B) \ge \frac{1}{3^d} \cdot a$.
 $B \in C$.

Granded this lemma, we finish the proof of the Hardy-Littlewood theorem as
follows. For each
$$\alpha < \lambda(d)$$
 let $C := \{B_{r_{\alpha}}(x) : x \in D\}$ and get a
finite disjoint $C_{0} \in C$ from the Vitali covering lemma, so $\lambda(C_{0}) = \frac{1}{3a} \cdot a$,
there $C_{0} := \prod_{B \in C_{0}} B$. Then:
 $\int_{B \in C_{0}} \int_{B \in C_{0}} \int_$

Proof of Vitali covering. By choosicy a large enough ball B, we have that

$$\lambda(D \cap B) \ge a$$
, so by neplacing D with D \cap B, we are assure that $\lambda(D) \le \omega$.
Now trighteen applies and gives a compact $K \le D$ with $\lambda(K) \ge a$, so replacing
D with K, we may assume that D is compact. Since C is a cover of D,
there is a finite subcover $C' \le C$. Enumerable C' by decreasing diameter
of balls: $B_{1,...,}B_{n}$. We greedily litice a disjoint subsequence of this balls:
 $V = min \{i : Bi \cap B_{n_1} = \emptyset\}$.
 $Men M_2 := min \{i : Bi \cap B_{n_1} = \emptyset\}$.
For a ball B let \tilde{B} denote the ball with the same under by 1 three is
Then we claim that $\tilde{U} \tilde{B}_{n_1} \supseteq \tilde{U} \tilde{B}_i$. Indeed, for each $i \le 1,..., k$ there is
 $B_{n_1} = V_i$.

We radius of
$$B_{nj}$$
 is \geqslant the radius of B_i . But then
 $\lambda \left(\overset{\iota}{\sqcup} B_{nj} \right) = \overset{\iota}{\sum} \lambda \left(B_{nj} \right) = \frac{1}{3^{\alpha}} \overset{\iota}{\sum} \lambda \left(\overset{\iota}{B}_{nj} \right) \geqslant \frac{1}{3^{\alpha}} \lambda \left(\overset{\iota}{\bigcup} \overset{\iota}{B}_{nj} \right) \gtrsim \frac{1}{3^{\alpha}} \lambda \left(\overset{\iota}{\bigcup} \overset{\iota}{B}_{nj} \right) \gtrsim \frac{1}{3^{\alpha}} \lambda \left(\overset{\iota}{\bigcup} \overset{\iota}{B}_{nj} \right) \gtrsim \frac{1}{3^{\alpha}} \lambda \left(\overset{\iota}{\bigcup} \overset{\iota}{B}_{nj} \right) \approx \frac{1}{3^{\alpha}} \lambda \left(\overset{\iota}{B}_{nj} \right)$

Technical Stengthening of Laborague Differentiation. For any
$$f \in L_{loc}^{\prime}(\mathbb{R}^{d}, \lambda)$$
 and for
a.e. $x_{0} \in \mathbb{R}^{d}$,
$$\lim_{r \to 0} \frac{1}{\lambda(B_{r}(x_{0}))} \int |f(y)-f(x_{0})| d\lambda(y) = 0 \quad (H)$$
$$B_{r}(x_{0})$$

Proof. We know for a fixed xo, applying the Labergue diff. thus, to
$$|f(x) - f(x_0)|$$
,
we get that for a conclusive $C_x \leq (Rd, for every x \in C_{Xo}, we have:
$$\lim_{x \to 0} \frac{1}{\lambda(B_r(x))} \int |f(y) - f(x_0)| d\lambda(y) = |f(x) - f(x_0)|.$$$

If
$$x_0 \in C_{x_0}$$
, then we get (tt), but x_0 may not be in C_{x_0} . We would like
to take $\bigcap C_{x_0}$ and "hope" that it is shill a could set. To make this intribute
idea work, we use \mathbb{Q} .
For each $y \in \mathbb{Q}$, we apply the Leb. diff. then to $f-g$ and obtain a conclu-
 $C_q \subseteq \mathbb{R}^d$ such that for all $x \in C_q$, we have
 $\lim_{x \to 0} \frac{1}{\chi(B_r(x))} \int |f(y) - g| d\lambda(y) = |f(x) - g|.$

Now
$$(:= \bigcap C_{q}$$
 is indeed would and we varies (#) for each $x_{0} \in C$.
Fix $x_{0} \in C$ and $\xi \neq 0$. Let $q \in OR$ with $|f(x_{0}) - q| < \frac{\xi}{2}$. Denote $c := f(x_{0})$.
Then for each $v \geq 0$,
 $A_{r} |f-c|(x_{0}) = \frac{1}{\lambda(B_{r}(x_{0}))} \int |f-c| d\lambda \leq \frac{1}{\lambda(B_{r}(x_{0}))} \int |f-q| d\lambda + \frac{1}{\lambda(B_{r}(x_{0}))} \int |g-c| d\lambda + \frac{1}$

$$\begin{array}{c|c} \underline{Daf.} & \text{For } x \in \mathbb{R}^{d}, \text{ we say that a family } B'r^{3}r^{3}r^{3}o & \text{of } \lambda-\text{measurable affectives used to x if $\exists p \in (0,1)$ such that $\forall r > \mathcal{D}$
(i) $B'_{r} \subseteq B_{r}(x)$
(ii) $\lambda(\tilde{B}_{r}) \ge p \cdot \lambda(B_{r}(x))$.$$

$$\frac{\text{Cor}\left(\text{another strengthening of Leb. diff. Hen), for each $f \in L_{le}^{i}(\mathbb{R}^{d}) \text{ and } a.e. \times \in \mathbb{R}^{d}, \\ \lim_{r \to 0} \frac{1}{\lambda(B_{r}^{i}(x))} \cdot \int |f(y) - f(x)| d\lambda = 0 \\ B_{r}^{i}(k) \\ \text{for each family } \{B_{r}^{i}(k)\}_{r \geq 0} \text{ Met shrinks nicely box.} \\ \frac{1}{1600^{d}} \frac{1}{N(B_{r}(x))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| d\lambda = 0. \\ \lim_{r \to 0} \frac{1}{\lambda(B_{r}(x))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| d\lambda = 0. \\ \frac{1}{N(B_{r}(x))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| d\lambda = 0. \\ \frac{1}{N(B_{r}(x))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| d\lambda = 0. \\ \frac{1}{N(B_{r}(x))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| d\lambda = 0. \\ \frac{1}{N(B_{r}(x))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| d\lambda = 0. \\ \frac{1}{N(B_{r}^{i}(k))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| dx = 0. \\ \frac{1}{N(B_{r}^{i}(k))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| dx = 0. \\ \frac{1}{N(B_{r}^{i}(k))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| dx = 0. \\ \frac{1}{N(B_{r}^{i}(k))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| dx = 0. \\ \frac{1}{N(B_{r}^{i}(k))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| dx = 0. \\ \frac{1}{N(B_{r}^{i}(k))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| dx = 0. \\ \frac{1}{N(B_{r}^{i}(k))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| dx = 0. \\ \frac{1}{N(B_{r}^{i}(k))} \cdot \int_{B_{r}^{i}(k)} |f(y) - f(x)| dx = 0.$$$

$$\begin{array}{c} \text{in h and h here all $r>0$, $B_{1}(k) \subseteq B_{1}(k)$ and $\lambda(B_{r}(k)) \geq p - \lambda(B_{r}(k))$. \\ \hline \\ \hline \\ \frac{1}{\lambda(B_{r}(k))} \cdot \int_{B_{r}(k)} |f(y) - f(x)| dh \stackrel{2}{=} \frac{1}{p \cdot \lambda(B_{r}(k))} \cdot \int_{B_{r}(k)} |f(y) - f(x)| dh \stackrel{2}{\to} 0 \\ \hline \\ \hline \\ \hline \\ \hline \\ B_{r}(k) \end{array}$$

Ubesque Differentiation of singular measures.

We proved that too a loc. finite Dorel measure
$$\mu$$
 on \mathbb{R}^d , if $\mu \ll \lambda$, then
 $\lim_{r \to 0} \frac{\mu(B_r(k))}{\lambda(B_r(k))} = \frac{d\mu}{d\lambda}(k) \lambda^{-a.e.}$ What if $\mu \perp \lambda$? For example, let μ
 $r \to 0 \frac{\lambda(B_r(k))}{\lambda(B_r(k))} = \frac{d\mu}{d\lambda}(k) \lambda^{-a.e.}$ What if $\mu \perp \lambda$? For example, let μ
be the pushtorward of Benoulli $(\frac{1}{2})$ measure
from 2th to the standard (actor set $C \leq \{0, 1\}$. Then for each $x \in \mathbb{R} \setminus C$,
we have $\mu(B_r(k)) = 0$ for small enough $r > 0$ betwee $B_r(c) \in \mathbb{R} \setminus C$.
Thus, $\lim_{r \to 0} \frac{\mu(B_r(k))}{\lambda(B_r(k))} = 0$ for all $k \in \mathbb{R} \setminus C$, head for λ -a.e. $x \in \mathbb{R}$.

Num let
$$\mu$$
 be a loc. Einite Borel measure on \mathbb{R}^d . If $\mu \perp \lambda$, then for
 λ -a.e. $x \in \mathbb{R}^d$ and any family $\{B'_r(k)\}_{r>0}$ that shrinks milely to x ,
 $\lim_{r\to 0} \frac{\mu(B'_r(k))}{\lambda(B'_r(k))} = 0.$
Froot. It's enough to prove for balls in day beause, if $p \in (0,1)$ is the shrinking

by the definition of timesup. Then
$$U \ge \bigcup B_{r_x}(x) \ge Z_d$$
, so we may replace U with
 $x \in Z_d$
 $V \ge r_x(x)$ and assume that $U = \bigcup B_{r_x}(x)$. In particular, $\mathcal{E} := \{B_{r_x}(x) : x \in Z_d\}$
 $Y \in Z_d$
is a cover of U so for each positive $a < \lambda(U)$, the Vitali covering lemma
gives a finite disjoint $\mathcal{E}_0 \in \mathcal{E}$ with $\lambda(\bigcup B) \ge a/3^d$. Then
 $B \in \mathbb{C}_0$
 $a \le 3^d \lambda(\bigcup B) \ge 3^d \ge \lambda(B) < \frac{3^d}{2} \ge \mu(B_{r_x}(x)) = \frac{3^d}{d} \cdot \mu(\bigcup B) \le \frac{3^d}{d} \cdot \mu(U) < \mathbb{E}$.
 (x)

Since $\alpha < \lambda(u)$ is arbitrary, we get $\lambda(u) < \xi$, so $\lambda(z_{\alpha}) < \xi$, as desired.